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1. Introduction

Distinct gauge choices in the open strings lead both to the realization of ordinary Yang-

Mills field theories as well as to noncommutative field theories. It was the perception of

this fact that made Seiberg and Witten propose what became known as the Seiberg-Witten

map (SW map) [1]. In brief words, this map establishes a transformation of noncommu-

tative field variables in terms of ordinary (commutative) fields, in such a way that the

noncommutative gauge transformation is mapped into the ordinary one.

Let us express this mathematically. First we introduce the Moyal product between

two functions defined on the noncommutative space [2]:

f ∗ g = exp

(

i

2
θij ∂

∂xi

∂

∂yj

)

f (x) g (y)y→x

= fg +
i

2
θij∂if∂jg + O

(

θ2
)

, (1.1)

where the real c-number parameter θij comes from the noncommutativity of the space-time

coordinates
[

xi, xj
]

= iθij. (1.2)

Making θij vanish brings the noncommutative theory into the commutative one. Then,

after defining the Moyal bracket,

[f ∗, g] = f ∗ g − g ∗ f , (1.3)

we are able to construct a noncommutative gauge transformation,

∧

δ∧

λ

∧

A= ∂i

∧

λ + i

[

∧

λ ∗,
∧

Ai

]

=
∧

Di

∧

λ , (1.4)
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where the hat symbol identifies fields and operators defined on the noncommutative space-

time and
∧

Di represents the Moyal covariant derivative. At this point it should be observed

that, although similar in form to a nonabelian gauge transformation, a nonvanishing con-

tribution coming from the Moyal bracket in (1.4) is expected even for an abelian gauge

field. In the same way, the noncommutative gauge curvature

∧

F ij= ∂i

∧

Aj −∂j

∧

Ai −i

[

∧

Ai
∗,

∧

Aj

]

(1.5)

gets a nonvanishing contribution coming from the commutator even for an abelian field.

In the abelian case, up to first order in θij, we get

∧

δ∧

λ

∧

A = ∂i

∧

λ −θkl∂k

∧

λ ∂l

∧

Ai +O
(

θ2
)

, (1.6)

∧

F ij = ∂i

∧

Aj −∂j

∧

Ai +θkl∂k

∧

Ai ∂l

∧

Aj +O
(

θ2
)

. (1.7)

Now, the sense of the SW map is that noncommutative gauge equivalent fields should

be mapped into ordinary gauge equivalent fields. If we express this map as a formal series
∧

Ai (A), what we are saying is that

δλ

[

∧

Ai (A)

]

=

[

∧

δ∧

λ

∧

Ai

]

(A) , (1.8)

where δλ is the ordinary gauge operation acting on Ai. ¿From the abelian expression (1.6),

we see that the SW map cannot be a simple field redefinition
∧

Ai=
∧

Ai(A, θ) together with a

reparametrization of
∧

λ=
∧

λ (λ, θ). The U (1) case is symptomatic: such choice of redefinitions

would never get rid of the Moyal term in (1.6), which comes from the noncommutative

nature of space-time, in contrast with the absence of noncommutative terms in an ordinary

U (1) gauge transformation. The only hope is to mix λ and A in the SW map of
∧

λ:
∧

λ=
∧

λ (λ,A, θ).

In first order in θ, we can write [1]

∧

Ai (A) = Ai − θkl

(

Ak∂lAi −
1

2
Ak∂iAl

)

+ O
(

θ2
)

, (1.9)

∧

λ (λ,A) = λ +
1

2
θkl (∂kλ) Al + O

(

θ2
)

. (1.10)

One can also establish how
∧

Ai and
∧

λ would change if we allow for variations in the θij

parameter. This problem is, in fact, analogous to that of the SW map in first order, as it

is its solution [1]:

δθ

∧

Ai = −
1

4
δθkl

{

∧

Ak
∗, ∂l

∧

Ai +
∧

F li

}

, (1.11)

δθ

∧

λ =
1

4
δθkl

{

∂k

∧

λ∗,
∧

Al

}

. (1.12)
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Equations (1.11) and (1.12) represent a system of coupled differential equations. But,

as we will discuss in sections 3 and 4, this system is not the most general one compatible

with the SW condition (1.8). And, from this point of view, equations (1.9) and (1.10) only

represent a first order particular solution. This is the source for the ambiguity of the SW

map already observed in the literature [1, 3]. It also should be stressed that eq. (1.11) has

been the starting point for an interesting result, when it was argued that the SW map would

transform the 3D noncommutative Chern-Simons theory into the ordinary Chern-Simons

theory with no corrections in θij whatsoever. This first exact result in the literature for

the SW map was obtained by just showing that [4]

δθ

∧

SNCCS= 0 (1.13)

where
∧

SNCCS stands for the 3D noncommutative Chern-Simons (NCCS) action and δθ is

the operation defined in eq. (1.11).

This result surprises as it is not obvious that the substitution of equation (1.9) on the

NCCS action would promote an exact cancellation of the θ terms order by order in θ, in

such a way that all the noncommutative contributions coming from the Moyal products be

gone, leaving just the usual commutative Chern-Simons action,

∧

SNCCS
SW map
−→ SCS . (1.14)

As a comparison, no such result has been found up to now for any other theory. Then, the

questions are if one can find other examples of such perfect mappings and what would be

the property for a theory to allow these mappings. Answering these questions is the aim

of this paper.

So, we begin the work in the next section by exploring the ambiguity in the solution

of (1.11) and (1.12) from a different point of view, coming from the cohomology of the

operators in play. We will derive the complete solution of the cohomology problem associ-

ated to the SW map. This will clarify the question if these ambiguities would damage the

exact SW map of NCCS. We will also briefly discuss the integrability of equation (1.11)

in higher orders in θ. With these developments, we will be able to generalize this equation

and show that also a theory as noncommutative Chern-Simons plus Maxwell (NCMCS) in

3D can be exactly mapped into the ordinary MCS theory avoiding any θ corrections. Our

final conclusion claims for a conjecture that such exact mappings will always be possible

in the presence of topological terms, but also that θ corrections will be unavoidable when

such terms are absent in pure geometrical theories. Some quantum aspects can then be

expected from this conjecture.

2. Ambiguities

From this point on, we will restrict ourselves to the abelian U(1) case. The question of the

ambiguities on the SW map can be traced from the disclosure of the map itself. Soon it

was noticed [1, 3] that the solution of the SW map (1.9) was not uniquely defined. This can

be foreseen from the definition of the map. It only requests that noncommutative gauge

– 3 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
8

equivalent classes should be mapped into commutative gauge equivalent classes, so leading

to a commutative gauge invariant theory in the end. But this theory will remain gauge

invariant if we allow for a subsequent transformation in the commutative gauge field as

long as it has the form of a (field dependent) gauge transformation or a gauge invariant

field redefinition [1, 3]. So, if we make a new transformation made by the composition

of the original SW map (1.9) and the gauge transformation or field redefinition of the

commutative connection, we will end with a map which will be again a SW map.

Some questions naturally arise in this context. The first is if there is space for other

ambiguities than those that we have listed above. The second is what would be the (math-

ematical and physical) consequences of these ambiguities in the SW mapping of a given

noncommutative theory.

We will approach these questions from the point of view of BRST cohomological tech-

niques [5 – 7]. In this language, the gauge transformation of the commutative gauge field

is described by the action of the nilpotent BRST differential s,

sAi = ∂ic, sc = 0, s2 = 0, (2.1)

where c is the commutative ghost field. As before, we take
∧

C and
∧

Ai, the noncommutative

fields, as formal power series in θ whose coefficients are local polynomials in c and Ai (and

in their derivatives). Then equation (1.8) for the SW map is translated as [5]

s
∧

Ai= ∂i

∧

C +i

[

∧

C∗,
∧

Ai

]

, (2.2)

and

s
∧

C= i
∧

C ∗
∧

C . (2.3)

We write the series in θ as

∧

Ai = Ai +
∞

∑

n=1

A
(n)
i , (2.4)

∧

C = c +

∞
∑

n=1

C(n), (2.5)

where A
(n)
i and C(n) identify the term with n θ′s in the power series expansion of the fields.

Now we are able to expand equations (2.2) and (2.3) as well. In their n′th order, we find

sA
(n)
i = ∂iC

(n) −
n

∑

α=1

θkl∂kC
(n−α)∂lA

(α−1)
i + . . . . . . (2.6)

+
in+1

2nn!
θk1l1 . . . θknln (∂k1

. . . ∂kn
c∂l1 . . . ∂lnAi − ∂k1

. . . ∂kn
Ai∂l1 . . . ∂lnc) ,

sC(n) = −
1

2

n
∑

α=1

θkl∂kC
(n−α)∂lC

(α−1) + . . . (2.7)

+
in+1

2nn!
θk1l1 . . . θknln∂k1

. . . ∂kn
c∂l1 . . . ∂lnc ,
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with A
(0)
i = Ai and C(0) = c. Then, up to second order in θ,

sAi = ∂ic, (2.8)

sA
(1)
i = ∂iC

(1) − θkl∂kc∂lAi, (2.9)

sA
(2)
i = ∂iC

(2) − θkl
(

∂kC
(1)∂lAi + ∂kc∂lA

(1)
i

)

, (2.10)

and

sc = 0, (2.11)

sC(1) = −
1

2
θkl∂kc∂lc, (2.12)

sC(2) = −θkl∂kc∂lC
(1). (2.13)

(2.14)

The first order in θ equation, where the map begins, has a solution which can be

divided into two parts. The first part is any particular solution of the “inhomogeneous”

equations, where the “inhomogeneity” is characterized by the explicit θ-dependent term

in (2.9) and (2.12). Let us call this part as a
(1)
i and c(1) respectively. The second part is

the general solution (A(1), C(1)) for the associated homogeneous equations

sA
(1)
i = ∂iC

(1), (2.15)

and

sC
(1) = 0. (2.16)

The first part of the solution,
(

a
(1)
i , c(1)

)

, became known as the first order SW map [1],

which can be read from eqs. (1.9) and (1.10)

a
(1)
i (A) = −θkl

(

Ak∂lAi −
1

2
Ak∂iAl

)

, (2.17)

c(1) (c,A) =
1

2
θkl (∂kc) Al.

Now, the general solution A
(1)
i is the source of all the ambiguities and freedom in the

SW map that the literature refers to [1, 3]. Eq. (2.15), together with the nilpotency of

s assured in (2.1), happens to be a problem of the cohomology of the BRST operator

modulo total derivatives (a review of the cohomology of BRST can be found in [8]). A
(1)
i

is the most general polynomial satisfying (2.15) constructed with the commutative gauge

field, derivatives and one θ, in the sector with ghost number zero, canonical dimension 1

and carrying a free Lorentz index (remembering eqs. (1.1) and (1.2), we can associate a

dimension −2 to θ). Eq. (2.16), which is a direct consequence of the nilpotency of s and

of eq. (2.15), is a problem of the local cohomology of s, in the sector with ghost number 1

and zero canonical dimension.

In fact, the set of eqs. (2.15) and (2.16) will be found in each sector n of the θ expansion

of (2.2) and (2.3)

sA
(n)
i = ∂iC

(n), (2.18)

– 5 –
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and

sC
(n) = 0. (2.19)

The solutions will change as the required number of θ′s change for each n.

In the study of the cohomology of BRST modulo total derivatives (H(s/d)) one can

find an analogous set of equations as this above. They are known as descent equations, and

they appear in the analysis of the quantum stability and anomalies of gauge theories [8].

In the seek of completion, we will briefly review the general ideas of this study. Let us

write generic descent equations with the same Lorentz structure as (2.18) and (2.19)

sWi = ∂iX, (2.20)

and

sX = 0, (2.21)

where Wi and X are formal power series in the field and parameter space of the gauge

theory. We have to solve this problem beggining by the last equation of the set, (2.21),

which is a simpler problem of the local cohomology. The solutions of (2.21) are classified

as trivial, those which are written as simple BRST variations of polynomials in the field

space P (ϕ) of the problem, or non-trivial solutions, invariant polynomials which cannot be

written in this way,

X = Y + sZ, | sY = 0 and Y 6= s Ω ,∀ Ω ∈ P(ϕ). (2.22)

We say that Y belongs to the local cohomology of the s operator, Y ∈ H(s). We can act

with a derivative on (2.22) and substitute the result on (2.20),

s (Wi − ∂iZ) = ∂iY . (2.23)

Let us say that we can find a particular solution to this equation, let us call it δ(∂iY ), such

that

sδ(∂iY ) = ∂iY . (2.24)

It is important to observe that sometimes it is not possible to find such particular solutions

coming from non-trivial contributions of lower level descent equations [8]. When this

happens, we say that this solution is obstructed and we are forced to make null its coefficient

in order to continue the procedure. Substituting (2.24) on (2.23), we get

s (Wi − δ(∂iY ) − ∂iZ) = 0. (2.25)

Now, this is again a problem of the local cohomology of s, and again the solutions will be

classified as in (2.22)

Wi − δ(∂iY ) − ∂iZ = Yi + sZi | sYi = 0 and Yi 6= sΩi,∀ Ωi ∈ P(ϕ). (2.26)

So, finally, the general solution of (2.20) is

Wi = Yi + δ(∂iY ) + sZi + ∂iZ. (2.27)

– 6 –
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The terms given by Yi + δ(∂iY ) represent the nontrivial contributions to the cohomology

of s/d, and sZi + ∂iZ is the trivial part which is written as s or ∂i variations of cocycles in

the field space. In many problems of interest in quantum field theory, the trivial solutions

are discarded for not carrying physical information. This happens in the study of the

stability and anomalies in QFT. In what concerns the present problem of the SW map,

this cohomological classification will also be of mathematical and physical relevance, as we

will see in a moment.

We can return now to our specific problem. We want to solve the cohomological

problem posed by equations (2.18) and (2.19) in the field space generated by Ai, c, and

derivatives acting on them, in the presence of θ parameters (and obviously of all other

parameters the theory under study allows),

PSW = {θ,Ai, c, ∂i} . (2.28)

We first argue that trivial s cocycles do not exist at the level of the upper descent equa-

tion (2.18) for any n. Notice that A
(n)
i has zero ghost number, and as there is no element

in the field space PSW with negative ghost number, it is not possible to find any Zi with

ghost number −1 as required by eq. (2.27). Next we will prove that neither there are

contributions of the form δ(∂iY ) at the upper level .

Proposition 2.1 The only nontrivial solutions of the s/d cohomological problem given

by eqs. (2.18) and (2.19) belong to the local s cohomology H(s) at the upper level descent

equation.

Proof: The local BRST cohomology of (abelian) gauge theories for arbitrary quantum

numbers has already been extensively studied. It is given by polynomials built with the

ghost c non derivated and the curvature Fij = ∂iAj − ∂jAi possibly derivated [8]. In the

case of eq. (2.19), we are looking for the cohomology of s in the sector of ghost number

1, zero dimension and in the presence of a n number of θ′s. So, the form of the general

element of H(s) in this sector is

αcθk1l1 . . . θknln .Pk1l1...knln(∂i, Fij), (2.29)

where α is a numerical coefficient and Pk1l1...knln(∂i, Fij) represent all possible s invariant

polynomials constructed with an arbitrary number of derivatives of the curvature, with free

indices k1l1 . . . knln, and total dimension 2n. This is the most general nontrivial solution

for C
(n). Following the steps from (2.22) to (2.24), in order to find the contribution in

the upper level coming from this lower level descent equation nontrivial solution, we must

solve

sA
(n)
i = α∂icθ

k1l1 . . . θknln .Pk1l1...knln(∂, F ) + αcθk1l1 . . . θknln .∂iPk1l1...knln(∂, F )

= s
(

αAiθ
k1l1 . . . θknln .Pk1l1...knln(∂, F )

)

+ αcθk1l1 . . . θknln .∂iPk1l1...knln(∂, F ).(2.30)

It becomes clear now that there is no possible solution for A
(n)
i as the last term on (2.30) is

again an element of H(s) and in this way cannot be written as a s variation of any cocycle

– 7 –
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of the field space. This characterizes the kind of obstruction we just mentioned, and the

way out is to make α = 0. Then, the only non-trivial solutions to (2.18) are those of the

local cohomology H(s) in the sector of ghost number zero, dimension equals to one, in the

presence of a n number of θ′s and with a free Lorentz index. QED

Let us call this local cohomology at the upper level equation (2.18) as H(n)(s). The

general element of H(n)(s) will be of the form

Y
(n)
i = αθk1l1 . . . θknln .Pik1l1...knln(∂, F ), (2.31)

where α is a numerical coefficient and Pik1l1...knln(∂, F ) represent all possible s invariant

polynomials constructed with an arbitrary number of derivatives of the curvature, with free

indices ik1l1 . . . knln, and total dimension 2n + 1. Finally, we find that the most general

solutions to the eqs. (2.18) and (2.19) are given by

C
(n) = sZ(n), (2.32)

and

A
(n)
i = Y

(n)
i + ∂iZ

(n), (2.33)

where Z(n) are generic polynomials with zero ghost number and dimension, built with

elements of the field space PSW in the presence of n θ′s. Notice that, unlike Y
(n)
i , the Z(n)

polynomials need not be invariant under the action of the BRST operator.

Having solved the cohomology associated to the problem of the SW map, we can now

ask what changes the solutions A
(n)
i can bring in the higher orders of the SW map once

they are defined. For simplicity, let us say that we have found these cocycles in a given

theory already at the first order, n = 1,

C
(1) = sZ(1), (2.34)

A
(1)
i = Y

(1)
i + ∂iZ

(1). (2.35)

The second order equations for the SW map would be

sA
(2)
i = ∂iC

(2) − θkl
(

∂k

(

c(1) + C
(1)

)

∂lAi + ∂kc∂l

(

a
(1)
i + A

(1)
i

))

, (2.36)

sC(2) = −θkl∂kc∂l

(

c(1) + C
(1)

)

, (2.37)

where a
(1)
i and c(1) are the particular solutions given in (2.17). We can make our usual

division of the solution into the particular solution to the system above
(

a
(2)
i , c(2)

)

and the

general solution of the associated homogeneous system
(

A
(2)
i , C(2)

)

. This latter system

will be of the form of (2.18) and (2.19) for n = 2, and will be solved once we find the

polynomials Y
(2)
i and Z(2), and substitute them on the general equations (2.32) and (2.33).

The former system can be further split into a part that depends on the solutions of the

cohomology of the first level, which we call
(

a
R(2)
i , cR(2)

)

,

sa
R(2)
i = ∂ic

R(2) − θkl
(

∂kC
(1)∂lAi + ∂kc∂lA

(1)
i

)

, (2.38)

scR(2) = −θkl∂kc∂lC
(1), (2.39)

– 8 –
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and a part
(

a
I(2)
i , cI(2)

)

which only depends on the particular solutions
(

a
(1)
i , c(1)

)

of the

first level,

sa
I(2)
i = ∂ic

I(2) − θkl
(

∂kc
(1)∂lAi + ∂kc∂la

(1)
i

)

, (2.40)

scI(2) = −θkl∂kc∂lc
(1). (2.41)

Different solutions of this last system have already been found in the literature [9 – 11]. We

reproduce that of [9] for a
I(2)
i :

a
I(2)
i =

1

2
θklθmnAk (∂lAm∂nAi − ∂lFmiAn + FlmFni) . (2.42)

But all these particular solutions that we cited are conected by trivial cocycles of the form

∂iZ
(1) [11], showing that they all belong to the same (trivial) cohomological class. Then,

the work to be done is to solve the system (2.38). We first notice that if it was not for the

presence of the trivial cocycle C
(1), the first equation of (2.38) would have exactly the form

of equation (2.9) for n = 1 with A
(1)
i placed instead of Ai. So, our guess for the particular

solution of (2.38) is to take a
(1)
i and c(1) and change Ai for A

(1)
i in the following form

a
R(2)
i = −θkl

(

A
(1)
k ∂lAi + Ak∂lA

(1)
i −

1

2
A

(1)
k ∂iAl −

1

2
Ak∂iA

(1)
l

)

, (2.43)

cR(2) =
1

2
θkl (∂kc) A

(1)
l +

1

2
θkl∂kC

(1)Al.

In fact, as can be inferred from equations (2.7) and (2.8), the existence of a solution A
(n)
i ,

eq. (2.33), at any given order n developes a problem analogous to that of the first order

upon the next order n + 1, i.e.

sa
R(n+1)
i = ∂ic

R(n+1) − θkl
(

∂kC
(n)∂lAi + ∂kc∂lA

(n)
i

)

, (2.44)

scR(n+1) = −θkl∂kc∂lC
(n), (2.45)

which will have the same kind of solution as (2.43)

a
R(n+1)
i = −θkl

(

A
(n)
k ∂lAi+Ak∂lA

(n)
i −

1

2
A

(n)
k ∂iAl−

1

2
Ak∂iA

(n)
l

)

, (2.46)

cR(n+1) =
1

2
θkl (∂kc) A

(n)
l +

1

2
θkl∂kC

(n)Al.

We can rewrite the expressions (2.43) in a compact way, making it clear the implicit

redefinition of Ai and of c:

a
R(2)
i = a

(1)
i

(

Ai + A
(1)
i

)

|θ2 , (2.47)

cR(2) = c(1)
(

c + C
(1), Ai + A

(1)
i

)

|θ2 ,

where |θ2means projection on the θ2 dependence of the polynomial. Obviously, this proce-

dure can be continued to higher orders. For example, it is not difficult to show that the
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effect of A
(1)
i on the third order particular solution of the SW map is a

(2)
i

(

Ai + A
(1)
i

)

|θ3 .

And, as eqs. (2.46) show, each new element A
(n)
i (2.33) of the cohomology of s modulo

derivatives adjoined at each order in θ means a new redefinition of the gauge conection.

Recalling that the elements of H(n)(s) are gauge invariant polynomials constructed with

curvatures and their derivatives, we indeed have shown the identification between the BRST

sense of the SW map ambiguity [7, 5], given by H(n)(s), and the well known freedom of

the SW map by redefinitions of the commutative gauge potential [1, 3]. The BRST trivial

part of the solution (2.33) for A
(n)
i , being given by total derivatives ∂iZ

(n), is easily seen

as the freedom of the SW map by field dependent gauge tranformations [1, 3]

Finally, as there are no other possible elements allowed by the general solution (2.33),

we answer the first question we proposed at the beggining of this section by saying that

there is no room for other ambiguities in the SW map than these listed above.

It is time now to call attention to the different roles played by the cohomologically

trivial and non-trivial parts of the general solution of the SW map. The trivial parts, as we

just mentioned, have the form of gauge transformations. So, if we sum a BRST trivial term

to any particular solution of the SW map, the final commutative gauge invariant action

so mapped will not change at all. But a nontrivial solution of H(n)(s) in the cohomology

of s/d will be able to modify any commutative action (see [12] for a study of the effects

of gauge invariant field redefinitions on gauge invariant actions). After the understanding

of this point, it becomes clear that there can be no uniquely defined commutative action

coming from the SW map of a noncommutative theory if s/d nontrivial elements of H(n)(s)

are found. This is a first hint in the way to answer the second question at the beggining of

this section about the implications of the ambiguities on the mapping of noncommutative

actions. Anyway, in the next sections we will extract some general information on the

commutative theories coming from the SW map.

3. The general SW map for NCCS

From the developments of the last section, we saw that eqs. (1.9) and (1.10) are not a

complete solution to the SW map problem. Already at first order there is a contribution

to the solution in eq. (1.9) coming from elements of H(s) which will be relevant to the SW

mapping of noncommutative actions

∧

Ai (A) = Ai − θkl(Ak∂lAi −
1

2
Ak∂iAl) + A

(1)
i + O(θ2). (3.1)

We also saw how the presence of nontrivial contributions of a given order n will alter

the higher order terms, by generating a covariant mapping

Ai → Ai + A
(n)
i (3.2)

in the particular solution of the SW map.

With this in mind, we are now in a position to analyse eqs. (1.11) and (1.12) and

understand the consequences of its use. As described before, eq. (1.11) is a solution of

a problem analogous to the first order SW map, and thus it is subjected to the same
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limitations as those of the particular solution (1.9). In fact, equation (1.11) is only valid

modulo field dependent gauge transformations and covariant field redefinitions (in [3] the

authors have pointed out in this direction but incorporated only total derivatives (trivial

contributions) in their analysis). This can also be noticed if one tries to write the second

order expansion (θδθ) of (1.11) using as first order solution eq. (1.9). Then, one finds that

eq. (1.11) is not integrable at this order, if such “ambiguities” are not taken into account.

In a certain sense, eq.particular solution (1.9) of the SW map. Thus, results coming from

the use of eq. (1.11) will only refer to direct consequences of such a particular map and

will not allow for the broader picture implied by the general solution (in the next section

we will make use of the generalization of (1.11)).

This conclusion takes us back to eq. (1.13) developed in [4]. We said that there can be

no uniquely defined commutative action coming from the SW map of a noncommutative

theory when we have s/d nontrivial H(s) contributions. But the conflict is now solved

when we understand that eq. (1.13) comes as a direct consequence of eq. (1.11), and the

latter is, by its turn, dependent on a particular solution of the SW map, the one associated

to the s/d trivial solutions of H(s).

So, we will explicitly construct now a solution of the SW map with the intent of showing

how the commutative Chern-Simons theory can be deformed by θ terms coming from its

noncommutative version.

In the first order in 3D, the only element of H(s) is

A
(1)
i = αθkl∂iFkl (3.3)

(just remembering that the original NCCS action does not contain the metric, so we do

not include it on the field and parameter content of the theory). But this element becomes

trivial in the s/d cohomology as it is a total derivative in the free index, and in this way it

does not give any contribution to the commutative action.

In the second order, we can find an element of H(s)

A
(2)
i = αθabθefFai∂bFef (3.4)

which cannot be written as a total derivative in the free index.

This suggests a deformation of the commutative CS action in the θ2 order. In fact,

writing the SW map up to second order as (compare with the usual solution of [9] in (2.42))

∧

Ai = Ai −
1

2
θkl (2Ak∂lAi − Ak∂iAL) (3.5)

+ θklθmn

[

1

2
Ak ((∂lAm)∂nAi − (∂lFmi)An + FlmFni) + αFki∂lFmn

]

+ o(θ3),

we get a contribution from the SW map of the NCCS action in the commutative space

beyond the usual CS term,

∧

SNCCS −→ SCS +
α

2

∫

d3xεabcθklθmn × [Fka∂lFmn∂bAc + Aa∂b (Fkc∂lFmn)] + o(θ3)

= SCS +
α

2

∫

d3xεabcθklθmn [∂l (FkaFmn) Fbc] + o(θ3). (3.6)
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Such deformations of the CS theory we reach here were probably ignored so far because

the solutions found for
∧

Ai have consisted of cohomologically trivial variations (gauge trans-

formations) of the same particular solution of the SW map [11]. Nevertheless we have to

remark that the possible existence of nontrivial contributions had already been anticipated

in [3].

The main point in the θ deformations in the commutative space obtained in (3.6) is

that they are solely expressed in terms of the curvature and derivatives. This indeed is not

a specific feature of the order that we have analysed. As we have shown in section 2, the

elements A
(n)
i ∈ H(s) generate a covariant mapping, eq. (3.2), in the SW map. Eq. (3.6)

is an example of this fact, as it is just a mapping of the CS action by Ai → Ai + A
(2)
i up

to second order. So, we can say that the general form of the commutative action after a

SW map of the NCCS taking into account all possible A
(n)
i is

∧

SNCCS−→ SCS +
1

2

∞
∑

n=1

∫

d3xεabc
A

(n)
a

[

Fbc +
∞

∑

m=1

∂bA
(m)
c

]

, (3.7)

and we see that the deformations of the CS action are all given by monomials constructed

with the curvature and its derivatives. We can also assure that they all are interaction

terms. The only possible contribution to a kinetic term would come from the first or-

der (3.3). But this first order term, being a pure gauge, does not deform the CS action.

In [13] actions as (3.7) were studied. It was then shown that even these non-power-

counting interactions cannot change the topological character of the CS theory, at least,

perturbatively. The sensible point is that the kinetic topological action induces a definition

of the physical observables of the theory as link invariants, and these are not perturbed by

the interaction terms (it is straightforward to generalize the argument in [13] to interactions

with external parameters θ).

We thus conclude that, in spite of the deformations appearing in the action (3.7),

the SW map of the NCCS leads to commutative actions physically equivalent to the 3D

Chern-Simons theory from the perturbative point of view. This analysis, in this sense,

complements the result of [4]. This reasoning is also in agreement with the result of [14],

where the authors showed that the tree level CS coefficient is not renormalized when

NCCS is quantized in the axial gauge.

4. The general SW map for NCMCS

Let us turn now to another example in 3D theories. The noncommutative Maxwell-Chern-

Simons model (NCMCS) has also been extensively studied [15 – 19]. The NCMCS action

is

∧

SNCMCS=

∫

d3x

[

−
1

4

∧

F ij ∗
∧

F
ij +

m

2
εijk

(

∧

Ai ∂j

∧

Ak −
2i

3

∧

Ai (
∧

Aj ∗
∧

Ak)

)]

, (4.1)

where m is the 3D noncommutative topological mass. The particular solution of the SW

map leads to a complicated non-power-counting commutative action, which has already

– 12 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
8

been calculated up to the second order in θ [17]

∧

SNCMCS
SWmap
−→ SMCS −

1

2
θij

∫

d3x

(

FjkF
klFli −

1

4
FijF

klFkl

)

(4.2)

+
1

4
θijθkl

∫

d3x

(

2FjkFlmFmnFni + FjmFm
k Fn

l Fni − FijFkmFmnFnl +

−
1

8
FijFklFmnFmn +

1

4
FjkFliFmnFmn

)

+ O(θ3).

Obviously, all these interaction terms come from the mapping of the noncommutative

Maxwell term in (4.1), as the NCCS term is not transformed by the particular SW map

of (1.9) [4]. In [20] an argument was given for concluding that the interaction terms will

always depend only on the field strength F at any order in θ. This was latter formally

proved in [21] so that
∧

SNCMCS−→ SMCS + L(θ, F ). (4.3)

In the previous section, we showed how the covariant contributions to the SW map

change the form of the commutative action coming from the NCSS action. We can ask

here, in the NCMCS case, what role the covariant contributions can play.

The authors in [19] showed that a term of the form 1
m

εijkθ
jkF 2 could be used to cancel

part of the first order in θ term in (4.2), although other first order terms would then be

generated. This prompts us to generalize the idea a little bit further and find the complete

form of the covariant term that should be added to (1.9) in order to cancel the first order

terms in (4.2). Indeed we found that

A
(1)
i =

1

2m
εijkθ

ljF knFnl −
1

8m
εijkθ

jkF 2, (4.4)

when substituted in the NCCS sector of (4.1), is able to cancel the first order contribution

of (4.2). Notice that the terms in (4.4) for A
(1)
i were not allowed in the pure CS case,

eq. (3.3), since they depend on the metric, which was not part of the field and parameter

content of the theory. But when we substitute (4.4) in the NCM sector of (4.1), we

generate θ first order terms in 1
m

. These can again be cancelled by covariant terms in 1
m2

in the NCCS sector, and we see that the complete A
(1)
i is in fact an infinite series in powers

of 1
m

. The same process will happen in each θ order of the covariant ambiguities A
(n)
i .

The existence of such covariant mappings is not really a novelty. In [12], the authors

proved that covariant mappings can always be defined in a way to reabsorb into the 3D free

Maxwell-Chern-Simons action interaction terms constructed only with the field strength F

and derivatives, which is just the case of (4.3). Further, as the covariant mappings are part

of the ambiguities which are allowed in the SW map, all results of [12] can be adapted to

this present case.

With this intent, we begin by writing the generalization of (1.11) taking into account

the covariant ambiguities of the SW map,

δ′θ
∧

Ai= −
1

4
δθkl

{

∧

Ak
∗, ∂l

∧

Ai +
∧

F li

}

+ δθkl
∧

fkli

(

∧

F,
∧

D, θ

)

(4.5)
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where
∧

fkli stands for all possible covariant terms constructed with the curvatures
∧

F , the

Moyal covariant derivatives and the θ parameters. A generalization of this kind was first

proposed in [3], but only trivial terms (total derivatives) were considered for
∧

fkli. Obviously,
∧

fkli will transform covariantly in the noncommutative sense:

s
∧

fkli= i

[

∧

C ∗,
∧

fkli

]

. (4.6)

Using eqs. (4.5) and (1.13), we get that after a general SW map the NCCS action can

only depend on θ through terms containing
∧

fkli,

δ′θ
∧

SNCCS=
m

2
εijkδθmn

∫

d3x
∧

fmni

∧

F jk . (4.7)

But upon the NCM action, both parts of δ′θ
∧

Ai will contribute. First, we write the

expression for δ′θ
∧

F kl,

δ′θ
∧

F kl=
δθmn

4

[

2

{

∧

F km
∗,
∧

F ln

}

−

{

∧

Am
∗,
∧

Dn

∧

F kl +∂n

∧

F kl

}

+ 4

(

∧

Dk

∧

fmnl −
∧

Dl

∧

fmnk

)]

,

(4.8)

and then

δ′θ
∧

SNCM = −
1

2
δθmn

∫

d3x

[(

1

2

{

∧

F im
∗,
∧

F jn

}

−
1

4

{

∧

Am
∗,
∧

Dn

∧

F ij +∂n

∧

F ij

})

∧

F
ij

]

−
1

2
δθmn

∫

d3x

[(

∧

Di

∧

fmnj −
∧

Dj

∧

fmni

)

∧

F ij

]

. (4.9)

The sensible question is if it is possible to make

δ′θ
∧

SNCCS +δ′θ
∧

SNCM= 0 (4.10)

with a convenient choice of
∧

f ijk. The first step is to write the second element in (4.9)

exclusively in terms of
∧

F ij. This can be achieved as

δθmn

∫

d3x

{

∧

Am
∗,
∧

Dn

∧

F ij +∂n

∧

F ij

}

∧

F
ij =

1

2
δθmn

∫

d3x

{

∧

Fmn
∗,
∧

F ij

}

∧

F
ij (4.11)

and (4.10) leads to the equation

m

2
εijkδθmn

∫

d3x
∧

fmni

∧

F jk =
δθmn

2

∫

d3x

(

1

2

{

∧

F im
∗,
∧

F jn

}

−
1

8

{

∧

Fmn
∗,
∧

F ij

})

∧

F ij

+
δθmn

2

∫

d3x

(

2
∧

fmni

∧

Dj

∧

F
ij

)

. (4.12)

This equation can be solved for
∧

f ijk as a series in powers of 1
m

,

∧

f ijk=

∞
∑

r=1

∧

f
(r)

ijk , (4.13)
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where the upper index r designates the power in 1
m

. The first term in the order 1
m

is

∧

f
(1)

mni=
1

4m
εnik

{

∧

F jm
∗,
∧

F
jk

}

−
1

16m
εmni

{

∧

F jk
∗,
∧

F
jk

}

(4.14)

and the next orders can be obtained recursively from

∧

f
(r+1)

mni = −
1

m
εijk

∧

D
k ∧

f
(r)

mn
j . (4.15)

This means that with the choice of this specific covariant polynomial in (4.5) we can

assure the independence of the noncommutative Maxwell-Chern-Simons theory on the θ

parameter, eq. (4.10), i.e.

δ′θ
∧

SNCMCS= 0. (4.16)

5. Conclusion

In this paper we studied the effects of the ambiguities of the Seiberg-Witten map on

3D noncommutative gauge theories. We showed how covariant ambiguities added to the

normally used SW map deform the commutative Chern-Simons action by θ interaction

terms. We also showed how choosing adequate representatives of nontrivial (in the BRST

sense) ambiguities the noncommutative Maxwell-Chern-Simons action can be mapped into

the commutative version without the interaction terms which are usually associated to the

SW mapping of Maxwell type actions.

Although these two results apparently point out to different directions, they are, in

fact, the same development seen from different points of view. In both cases, what we

have shown is that among all possible SW maps classified by BRST cohomology, we can

find one element which cancels the θ contributions. It thus erases the memory of these

theories from their noncommutative origin. They are mapped into renormalizable, and in

the abelian cases we treat, even free, commutative theories. The only difference between

both cases lies in the need for a nontrivial BRST element in the NCMCS case, whereas

the NCCS case requires that only trivial BRST terms should be added to the particular

solution of the SW map in order to reach the commutative pure CS theory.

Indeed, both cases have more in common. As it was shown in [12], what allows for

the reabsorption of interactions made of covariant elements (such as curvatures and their

covariant derivatives) by non-linear local gauge field redefinitions is the presence of the

Chern-Simons term in the action (in [22] the pure Maxwell theory is mapped to pure

Chern-Simons theory but that mapping is not a series of local terms). This was crucial in

finding the solution to eq. (4.12), which led to eq. (4.16). We believe that this is a general

feature of noncommutative actions with Schwarz type topological sectors (we will be report-

ing soon on 4D noncommutative BF theories [23]).We also believe that these theories will

be well-behaved upon quantization, as long as gauge fixing conditions and all quantization

procedures can be translated from the commutative to the noncommutative space (this

has been shown for the pure NCCS theory by explicit calculations in the noncommutative

space [14]), although the renormalizability of pure NCBF models has been questioned
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in [24]. Unfortunately, the same argument indicates that purely geometrical theories, as

for instance the pure noncommutative Maxwell theory, seem to have unavoidably the com-

panion of power counting nonrenormalizable θ interactions in their commutative versions

after the SW map. The already found nonrenormalizability of NCQED [25] is an evidence

of this fact. The ambiguities of the SW map seem to be of no hope in these cases.
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[10] B. Jurco, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-abelian gauge

theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153].

– 16 –

http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://arxiv.org/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHYSA%2CA12%2C405
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHYSA%2CA12%2C405
http://jhep.sissa.it/stdsearch?paper=02%281998%29003
http://arxiv.org/abs/hep-th/9711162
http://jhep.sissa.it/stdsearch?paper=11%281999%29024
http://arxiv.org/abs/hep-th/9909139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB507%2C345
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB507%2C345
http://arxiv.org/abs/hep-th/0010113
http://jhep.sissa.it/stdsearch?paper=06%282001%29047
http://arxiv.org/abs/hep-th/0105192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA17%2C205
http://arxiv.org/abs/hep-th/0107225
http://jhep.sissa.it/stdsearch?paper=10%282001%29004
http://arxiv.org/abs/hep-th/0106188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB677%2C503
http://arxiv.org/abs/hep-th/0308092
http://jhep.sissa.it/stdsearch?paper=01%282002%29045
http://arxiv.org/abs/hep-th/0110101
http://jhep.sissa.it/stdsearch?paper=03%282000%29016
http://arxiv.org/abs/hep-th/9910138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC21%2C383
http://arxiv.org/abs/hep-th/0104153


J
H
E
P
0
4
(
2
0
0
7
)
0
1
8

[11] S. Fidanza, Towards an explicit expression of the Seiberg-Witten map at all orders, JHEP 06

(2002) 016 [hep-th/0112027].

[12] V.E.R. Lemes et al., A simple remark on three dimensional gauge theories, Phys. Lett. B 418

(1998) 324 [hep-th/9708098];

V.E.R. Lemes, C. Linhares de Jesus, S.P. Sorella, L.C.Q. Vilar and O.S. Ventura,

Chern-Simons as a geometrical setup for three-dimensional gauge theories, Phys. Rev. D 58

(1998) 045010 [hep-th/9801021];

D.G. Barci et al., Three dimensional fermionic determinants, Chern-Simons and nonlinear

field redefinitions, Nucl. Phys. B 524 (1998) 765 [hep-th/9801151];

V.E.R. Lemes, C.A. Linhares, S.P. Sorella and L.C.Q. Vilar, Large-mass behaviour of loop

variables in abelian Maxwell-Chern-Simons theory, J. Phys. A 32 (1999) 2469

[hep-th/9804186].

[13] V.E.R. Lemes, C.A. Linhares, S.P. Sorella, L.C.Q. Vilar and D.G.G. Sasaki, Perturbing

topological field theories, Phys. Rev. D 60 (1999) 065008 [hep-th/9902154].

[14] A.K. Das and M.M. Sheikh-Jabbari, Absence of higher order corrections to noncommutative

Chern-Simons coupling, JHEP 06 (2001) 028 [hep-th/0103139].

[15] S. Ghosh, Gauge invariance and duality in the noncommutative plane, Phys. Lett. B 558

(2003) 245 [hep-th/0210107]; Noncommutative Maxwell-Chern-Simons theory is free, Phys.

Lett. B 583 (2004) 347 [hep-th/0309014].

[16] M. Botta Cantcheff and P. Minces, Duality between noncommutative Yang-Mills-

Chern-Simons and non-abelian self-dual models, Phys. Lett. B 557 (2003) 283

[hep-th/0212031].

[17] O.F. Dayi, Noncommutative Maxwell-Chern-Simons theory, duality and a new

noncommutative Chern-Simons theory in D = 3, Phys. Lett. B 560 (2003) 239

[hep-th/0302074].

[18] T. Mariz, R. Menezes, J.R.S. Nascimento, R.F. Ribeiro and C. Wotzasek, Issues of duality on

noncommutative manifolds: the non-equivalence between self-dual and topologically massive

models, Phys. Rev. D 70 (2004) 085018 [hep-th/0306265];

M.S. Guimaraes, D.C. Rodrigues, C. Wotzasek and J.L. Noronha, On duality of the

noncommutative extension of the Maxwell- Chern-Simons model, Phys. Lett. B 605 (2005)

419 [hep-th/0410156].

[19] E. Harikumar and V.O. Rivelles, Noncommutative Maxwell-Chern-Simons theory in three

dimensions and its dual, Phys. Lett. B 625 (2005) 156 [hep-th/0506078].

[20] O.J. Ganor, G. Rajesh and S. Sethi, Duality and non-commutative gauge theory, Phys. Rev.

D 62 (2000) 125008 [hep-th/0005046].

[21] G. Berrino, S.L. Cacciatori, A. Celi, L. Martucci and A. Vicini, Noncommutative

electrodynamics, Phys. Rev. D 67 (2003) 065021 [hep-th/0210171].

[22] O.S. Ventura, R.L.P.G. Amaral, J.V. Costa, L.O. Buffon and V.E.R. Lemes, A new picture

on (3 + 1)D topological mass mechanism, J. Phys. A 37 (2004) 11711 [hep-th/0404169];

R.L.P.G. Amaral, O.S. Ventura, L.O. Buffon and J.V. Costa, Topological mass mechanism

and exact fields mapping, J. Phys. A 39 (2006) 941 [hep-th/0509025].

[23] In preparation

– 17 –

http://jhep.sissa.it/stdsearch?paper=06%282002%29016
http://jhep.sissa.it/stdsearch?paper=06%282002%29016
http://arxiv.org/abs/hep-th/0112027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB418%2C324
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB418%2C324
http://arxiv.org/abs/hep-th/9708098
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C045010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C045010
http://arxiv.org/abs/hep-th/9801021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB524%2C765
http://arxiv.org/abs/hep-th/9801151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA32%2C2469
http://arxiv.org/abs/hep-th/9804186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C065008
http://arxiv.org/abs/hep-th/9902154
http://jhep.sissa.it/stdsearch?paper=06%282001%29028
http://arxiv.org/abs/hep-th/0103139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB558%2C245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB558%2C245
http://arxiv.org/abs/hep-th/0210107
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB583%2C347
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB583%2C347
http://arxiv.org/abs/hep-th/0309014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB557%2C283
http://arxiv.org/abs/hep-th/0212031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB560%2C239
http://arxiv.org/abs/hep-th/0302074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C085018
http://arxiv.org/abs/hep-th/0306265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB605%2C419
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB605%2C419
http://arxiv.org/abs/hep-th/0410156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB625%2C156
http://arxiv.org/abs/hep-th/0506078
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C125008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C125008
http://arxiv.org/abs/hep-th/0005046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C065021
http://arxiv.org/abs/hep-th/0210171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA37%2C11711
http://arxiv.org/abs/hep-th/0404169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C941
http://arxiv.org/abs/hep-th/0509025


J
H
E
P
0
4
(
2
0
0
7
)
0
1
8

[24] A. Blasi, N. Maggiore and M. Montobbio, Instabilities of noncommutative two dimensional

BF model, Mod. Phys. Lett. A 20 (2005) 2119 [hep-th/0504218]; Noncommutative two

dimensional BF model, Nucl. Phys. B 740 (2006) 281 [hep-th/0512006].

[25] R. Wulkenhaar, Non-renormalizability of theta-expanded noncommutative QED, JHEP 03

(2002) 024 [hep-th/0112248].

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA20%2C2119
http://arxiv.org/abs/hep-th/0504218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB740%2C281
http://arxiv.org/abs/hep-th/0512006
http://jhep.sissa.it/stdsearch?paper=03%282002%29024
http://jhep.sissa.it/stdsearch?paper=03%282002%29024
http://arxiv.org/abs/hep-th/0112248

